Two New Xanthone Glycosides from Polygala tenuifolia

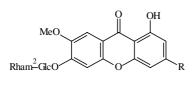
Yong JIANG, Peng Fei TU*

Modern Research Center of TCM, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100083

Abstract: Two new xanthone glycosides, polygalaxanthone IV and V were isolated from the roots of *Polygala tenuifolia* Willd. Their structures were established as 6-O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-1-hydroxy-3, 7-dimethoxyxanthone (polygalaxanthone IV), and 6-O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-1, 3-dihydroxy-7-methoxyxanthone (polygalaxanthone V), respectively, on the basis of chemical and spectral evidence.

Keywords: Polygala tenuifolia, xanthone glycosides, polygalaxanthone IV and V.

The roots of *Polygala tenuifolia* Willd, "yuanzhi" is a wellknown traditional Chinese medicine used as an expectorant, tonic, and sedative agents. It was reported that various xanthones, saponins and oligosaccharides had been isolated from this plant¹⁻⁶. In order to search for new physiologically active components, a systematic chemical study was made on the roots of *Polygala tenuifolia* from the main production area, Shanxi Province. In this paper, we report the structure elucidation of two new xanthone glycosides named polygalaxanthone IV (1) and V (2), which are xanthone glycosides with rhamnose in the sugar moiety isolated from the genus *Polygala* for the first time.


Compound 1 was obtained as yellow powder, mp 273-275°C. The TOF-MS of 1 exhibited a quasi-molecular ion peak at m/z 597 [M+H]⁺ and 619 [M+Na]⁺, combining with the analysis of ¹³C NMR spectrum, its molecular formulae was deduced to be $C_{27}H_{32}O_{15}$. Its UV spectrum in MeOH (λ_{max} 237, 256, 308 and 362 nm) is similar to that of 1, 6-dihydroxy-3, 7-dimethoxyxanthone $(\lambda_{max} 234, 255, 312 \text{ and } 364 \text{ nm})^{1}$. The IR spectrum of **1** showed the presence of hydroxyl groups (3407 cm^{-1}), a chelated ketone (1653 cm⁻¹), and aromatic rings (1612, 1580, 1478 cm⁻¹). The ¹H NMR spectrum showed a chelated hydroxyl signal at δ 13.00 (C-1-OH), two singlet aromatic protons at δ 7.45 and 7.29, two meta-coupled aromatic protons at δ 6.60 (d, 1H, J=2.1 Hz) and 6.37 (d, 1H, J=2.1 Hz), two anomeric proton signals at δ 5.42 (d, 1H, J=7.80 Hz) and 5.25 (s, 1H), and a methyl signal at δ 1.13 (d, 3H, J=5.7 Hz). In conjunction with a methyl carbon signal at δ 18.08 in the DEPT spectrum and the analysis of ¹H-¹HCOSY, it may be concluded that a methyl aldopentose sugar residue existed in this compound. On acid hydrolysis, 1 afforded glucose and rhamnose. The configuration of glucosyl residue was deduced to be β from the J value (7.8 Hz) of anomeric proton, and of rhamnosyl residue to be α by comparison of the ¹³C NMR data⁷. In HMBC spectrum,

Yong JIANG et al.

the rhamnose anomeric proton signal at δ 5.25 was correlated to C-2 (δ 75.1) of the glucosyl residue, and the glucosyl anomeric proton signal at δ 5.42 was correlated to C-6 signal of the aglycone (δ 152.8). Thus, **1** was determined to be 6-O-[α -L-rhamnopy-ranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl]-1-hydroxy-3, 7-dimethoxyxanthone.

Compound 2 was obtained as yellow powder, mp 232-235°C. Its UV and IR spectra were very similar to 1, but when adding NaOAC, the UV spectrum of 2 showed a bathochromic shift indicating the presence of a hydroxyl group at 3 or 6 position2. The TOF-MS of 2 showed a quasi-molecular ion peak at m/z 583 [M+H]+, 605 [M+Na]+ and 621 [M+K]+, 14 mass units lower than that of 1, and 13C NMR data were consistent with a formulae of C26H30O15. Comparing the NMR data with that of 1, an extra hydroxyl proton signal at δ 10.97 was presented in 1H NMR spectrum of 2, and a methyl carbon signal at δ 56.1 was disappeared in the DEPT spectrum of 2. All these data suggested that a hydroxyl group substituted a methoxyl group of 1 in 2. The NMR signals of B ring and of the sugar moiety were almost the same as those of 1, except that signals of A ring were a little different from those of 1, which indicated that the hydroxyl group substituted the methoxyl at C-3, but not at C-6. Thus, 2 was identified as 6-O-[α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosyl-1, 3-dihydroxy-7-methoxyxanthone.

Figure 1 Structures of 1 and 2

1 R=OMe 2 R=OH

Table 1	¹³ C NMR	data of 1	and 2	(DMSO-d ₆ .	δ ppm)
---------	---------------------	-----------	---------	------------------------	--------

	1	2		1	2
1	162.4	162.6	Glc-1	97.4	97.4
2	97.0	98.0	2	75.1	75.2
3	165.9	165.1	3	77.0	77.0
4	92.5	93.7	4	69.7	69.6
4a	157.3	157.4	5	77.6	77.6
4b	151.3	151.2	6	60.5	60.5
5	102.9	103.0	Rham-1	99.8	99.9
6	152.8	152.6	2	70.5	70.3
7	146.9	146.8	3	70.3	70.5
8	104.3	104.3	4	71.8	71.8
8a	113.2	113.2	5	68.4	68.4
8b	102.6	101.8	6	18.1	18.1
9	179.1	178.8			
OMe	55.8	55.8			
	56.1				

References

- 1. Y. Ikeya, K. Sugama, M. Okada, H. Mitsuhashi et al., Phytochemistry, 1991, 30 (6), 2061.
- 2. T. Fujita, D. Y. Liu, S. Ueda, Y. Takeda, Phytochemistry, 1992, 31 (11), 3997.
- 3. T. Miyase, Y. Iwata, A. Ueno, Chem. Pharm. Bull., 1991, 40 (10), 741.
- 4. T. Miyase, Y. Iwata, A. Ueno, Chem. Pharm. Bull., 1991, 39 (11), 3082.
- 5. S. Sakuma, J. Shojji, *Chem Pharm Bull*, **1981**, *21* (9), 2431.
- 6. S. Sakuma, J. Shojji, Chem Pharm Bull, 1981, 30 (3), 810.
- 7. T. Miyase, H. Noguchi, X. M. Chen, J. Nat. Prod., 1999, 62 (7), 993.

Received 25 July, 2001